A.3 Matlab Code: Source-Frame Extraction

```matlab
function [sourceFramesUtterance,F0_samples_Utterance] = ... 
    SourceFrames(x,fs,normdL,minf0,maxf0,frame_indicator)

% INPUT: x - speech waveform
%         fs - sample frequency of x
% OPTIONAL
%         normdL - normalised length of source-frames (256)
%         minf0 - minimum F0 to set lags for (100)
%         maxf0 - maximum F0 to set lags for (350)
%         frame_indicator - pre computed v/uv frame decisions

% OUTPUT: sourceFramesUtterance - normalised voice source waveform
%         F0_samples_Utterance - F0 corresponding to each source-frame

% Code uses Voicebox Matlab toolkit:
% http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html
% and for accurate F0 estimation:
% http://www.tik.ee.ethz.ch/db/public/tik/?db= ...
% publications&form=report_single_publication&publication_id=3227

if nargin < 5
    minf0 = 100;
    maxf0 = 350;
end

if nargin < 3
    normdL = 256;
end

% CONSTANTS
disp('Note that several parameters are specified inside SourceFrames()');
frameLengthTime = 0.03;           %seconds
frameIncTime = 0.01;              %seconds
frameLengthSamples = floor(frameLengthTime*fs);
frameIncSamples = floor(frameIncTime*fs);

nFFTpts = 1024;  %more=better, at cost of computation time (F0 estimation)
alpha = 0.95;    %pre-emphasis slope
P = round(fs/1000)+3; % rule of thumb for LP order
h = hanning(frameLengthSamples+P); %window function for LPC autocorr.
%hammingWindow = hamming(normdL)';
blackmanWindow = blackman(normdL)'; % source-frame normalisation window

% DIRECTORIES
matlabDir = cd;
if ismac()
    voiceboxDir = '/Users/davidvandyke/coding/ Matlab/voicebox'; % macbook
else
    isunix();
    voiceboxDir = '/data1/Code/DavidV/ Voicebox'; % HCC Server
else ispc()
```

233
voiceboxDir = 'X:\Code\DavidV\Voicebox'; % UC desktop

% CODE
sourceFramesUtterance = []; if nargout > 1
F0_samples_Utterance = []; end

% Split speech signal x into frames
frames = enframe(x,frameLengthSamples,frameIncSamples);
endFrames = size(frames,1);

% Determine F0 for each frame
F0_PLOT = false;
F0 = detectF0_contour(x,fs,frameLengthTime,frameIncTime,nFFTpts,...
minf0,maxf0,F0_PLOT);
frameF0samples = round(fs./F0);

% Determine which frames are voiced/unvoiced
if nargin > 5 % in this case have already determined which frames we want
frameVoicingBoolean = frame_indicator;
if numel(frame_indicator) ˜= nFrames
error('Number of frames not matched');
else
frameVoicingBoolean = VoicingDetector(frames,fs,minf0,maxf0);
end

% Determine averaged speech waveform for GCI and GOI detection
averaged = DynamicAveragedSpeech(x,fs,frameIncSamples,F0);
endFrames = enframe(averaged,frameLengthSamples,frameIncSamples);

% Parse all voiced frames
for frameNo = 2:nFrames-1
% this avoids out of index problems with xframePlus
% (unlikely first frame is voiced anyhow)
if frameVoicingBoolean(frameNo)
% then is a voiced frame
xframe = frames(frameNo,:);
aframe = averagedFrames(frameNo,:);

% STEPS 1 & 2 - determine GCI and GOI
% 1. determine residual (lpc error signal) over whole frame
xframePlus = [frames(frameNo-1,end-P+1:end),xframe];
xresidual = LPC_AutoCorrFrame(xframePlus,h,alpha,P);

% 2. determine GCI and GOI
[GCI,s,GOIs] = ...
GlottalInstants(aframe,xresidual,frameF0samples(frameNo));

% 3. closed phase auto covariance LPC + Prosody normalisation
sourceFrames = ClosedPhaseLPC_Covariance(GCIs,GOIs,...
 frames(frameNo-1:frameNo+1,:),P,alpha,...
 frameF0samples(frameNo),normdL);

% 4. Blackman window source-frames
if ~isempty(sourceFrames)
 for ii = 1:size(sourceFrames,1)
 sourceFrames(ii,:) = sourceFrames(ii,:).*blackmanWindow;
 end
endif

% 5. Store
sourceFramesUtterance = [sourceFramesUtterance;sourceFrames];
if nargout > 1
 F0_samples_Utterance = ...
 [F0_samples_Utterance;frameF0samples(frameNo)];
endif
end % END OF FUNCTION

function [residual,lpcCoefs,gain] = ...
LPC_AutoCorrFrame(framePlus,h,alpha,P)
% INPUT: framePlus: frame with P extra samples from previous frame
% h: windowing function for autocorrelation LPC
% alpha: pre-emphasis factor
% P: LP order
% OUTPUT: residual: LP residual signal
% lpcCoefs: autocorrelation lp coefficients
% gain: sqrt of power of linear predictors’ error

N = length(framePlus)-P;

% pre-emphasis then window
preEmph = filter([1 -alpha],1,framePlus);
data = preEmph.*h';

% lpc predictor coeffs
[lpcCoefs,gainSqr] = lpc(data',P); gain = sqrt(gainSqr);%

% calculate residual from lp
for n=1:N
 residual(n) = dot(lpcCoefs,flipud(framePlus(n:n+P)));
end
end % END OF FUNCTION
function [GCIs, GOIs] = ...
GlottalInstants(averagedFrame, frameResidual, frameF0samples)

% INPUT: averagedFrame: frame of averaged (low pass) speech
% frameResidual: frames autocorr lp residual
% frameF0samples: frame F0 in # samples
% OUTPUT: GCIs / GOIs: closure and opening instants per pp
% Based on: Drugman, T. and Dutoit, T., INTERSPEECH 2009
% Glottal closure and opening instant detection from speech signals,
%
% CONSTANTS & PREALLOCATION
GCIs = [];
GOIs = [];
DEBUG = false; % boolean - plot gci and goi estimates
% CODE
% determine extrema of sine type waveform and mid points between these.
points = [];
extrema = abs(averagedFrame(2:end)-averagedFrame(1:end-1));
for ii = 2:length(extrema)-1
% starting from min
extrema(ii) > extrema(max([1,ii-1])) && ...
extrema(ii) > extrema(min([length(extrema),ii+1]))
points = [points;ii];
extrema(ii) < extrema(ii-1) && extrema(ii) < extrema(ii+1)
points = [points;ii];
end
% REMOVE any points that are very near to each other (due to small
% problem variations in the averaged waveform)
minDIST = round(0.2*frameF0samples);
ii = 1;
while ii < length(points)-1
if points(ii+1) - points(ii) < minDIST
points(ii+1) = round(mean(points(ii+1)+points(ii))/2));
points(ii) = [];
ii = max([1,ii-1]);
end
ii = ii + 1;
end
% if DEBUG
figure;
plot(averagedFrame,'r');
hold on
for ii = 1:length(points)
plot(points(ii),averagedFrame(points(ii)),'kx');
end

236
%start parsing from first minima of averaged waveform
firstMin = 1;
% should always be in first 4, except when averaged waveform is bad.
for ii = 1:length(points)
 cond1 = averagedFrame(max([1,points(ii)-3])) > averagedFrame(points(ii));
 cond2 = averagedFrame(max([... ,length(averagedFrame),points(ii)+3])) > averagedFrame(points(ii));
 if cond1 && cond2
 firstMin = ii;
 break;
 end
end
if firstMin == 1

% return GCIs and GOIs as []
return;
elseif firstMin > 1
 points(1:firstMin-1) = [];
 % start from first minima
 if length(points) < 5
 return;
 end
end

% use frameResidual - find extrema of within containers.
pointNo = 1;
while pointNo + 3 < length(points)
 [~,gciIndex] = ... max(abs(frameResidual(points(pointNo):points(pointNo+1))));
 GCIs = [GCIs,gciIndex+points(pointNo)];
 [~,goiIndex] = ... max(abs(frameResidual(points(pointNo+2):points(pointNo+3))));
 GOIs = [GOIs,goiIndex+points(pointNo+2)];
 pointNo = pointNo + 4;
end
end

function [sourceFrames] = ClosedPhaseLPC_Covariance(GCIs,GOIs,frames,P,alpha,frameF0samples,normdL)
 % INPUT: GCIs/GOIs: closure and opening instants
 % frames: 3 x framerate - middle frame is of interest.
 % P: linear predictor order
 % alpha: pre-emphasis factor (deal with 6dB/octave slope)
 % frameF0samples: F0 in samples for each frame of frames
 % normdL: source-frame normalisation length
 % OUTPUT: sourceFrames: collection of prosody normalised derivative
 % glottal waveform estimates
ISSUES: deals by cases with closed phases which are small (<2P)

CONSTANTS & PREALLOCATION

sourceFrames = [];

npp = length(GCIs); % number pitch periods

if length(GOIs) ~= npp
 warning('Mismatch GCI and GOI numbers...');
 return;
end

Psmall = P - 2; % for high pitch voiced periods we may use a

% smaller predictor order for LPC analysis

MAX_EXTENSION = 8; % extend the goi by at most MAX_EXTENSION-1 samples

% to have 2P samples for LPC covariance analysis

frameLengthSamples = length(frames(2,:));

three_frames = [frames(1,:),frames(2,:),frames(3,:)];

preEmph = filter([1 -alpha],1,frames(2,:)); % pre-emphasise speech

% CODE

for ii = 1:npp
 % Do closed phase LP
 usedP = P;
 % CASE 1: all good
 if GOIs(ii) - GCIs(ii) > 2*P
 lpcCov = arcov(preEmph(GCIs(ii):GOIs(ii)),P);
 % CASE 2: try using a slightly smaller prediction order
 elseif GOIs(ii) - GCIs(ii) > 2*Psmall
 lpcCov = arcov(preEmph(GCIs(ii):GOIs(ii)),Psmall);
 usedP = Psmall;
 else
 extend_by = 2*P - (GOIs(ii)-GCIs(ii));
 % CASE 3: extend the closed phase by lengthening the opening
 % instant (which is harder to detect and including has less
 % effect on error as opening is gradual)
 if extend_by < MAX_EXTENSION & & GOIs(ii)+extend_by <= ... frameLengthSamples
 speech = preEmph(GCIs(ii):GOIs(ii)+extend_by);
 lpcCov = arcov(speech,P);
 else
 % CASE 4: skip this pitch period
 lpcCov = [];
 end
 end
end

% Now use lpcCov and determine residual
if ~isempty(lpcCov)
 % absolute to relative indices:
 residualLength = 3*frameLengthSamples-usedP;
 relativeIndexLeft = frameLengthSamples-usedP-frameF0samples;
 relativeIndexRight = frameLengthSamples-usedP+frameF0samples;
 residual = zeros(1,residualLength); % pre-allocation
 for n=1:residualLength
 %
residual(n) = dot(lpcCov,fliplr(three_frames(n:n+usedP)));
end
indices of residual overlapping frames(2,:):[frameLengthSamples-P]
sourceFrame = residual(relativeIndexLeft+GCIs(ii):...
relativeIndexRight+GCIs(ii));
% Prosody normalise (x and y) the glottal estimate
sourceFrame = ProsodyNormalise(sourceFrame,normdL);
sourceFrames = [sourceFrames;sourceFrame]; % and store
end
end % end of pitch periods loop
end % END OF FUNCTION

function [sourceFrame] = ProsodyNormalise(rawSourceFrame,normdL)
%resample(decimation or interpolation with required low pass filtering)
lengthOriginal = length(rawSourceFrame);
sourceFrame = resample(rawSourceFrame,normdL,lengthOriginal);
%also normalise the energy/amplitudes
scale = std(sourceFrame);
sourceFrame = sourceFrame/scale;
end